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PARTICLE MOTION IN A STANDING WAVE LINEAR ACCELERATOR* 

E.E. Chambers 

Stanford, California 
High Energy Physics Laboratory, Stanford University 

I. CASE I: ON AXIS 

1. Traveling Wave' Review 

The traveling wave electron accelerator is not simpler than the standing wave 
machine, but it is better understood. So, with the object of understanding, let us 
look at the first section of a traveling wave accelerator where the wave velocity $ 
is less than 1. 

According to the equations derived in the Appendix, after Slater,' the momentum- 
phase diagram is shown in Fig. la. The phase angle, rp, is here defined as the angle 
by which the electron leads the crest of the traveling wave, and P is the momentum of 
the electron. 
ahead of the wave crest because there is symmetry about the line cp = rr/2 with a trav- 
eling wave. 

Apparently, Slater chose .to call phase zero when the particle is rr/2 

In accordance with Eq. (8) of the Appendix, a function 

(1) 
( Y .  

f(rp) = H + - 2n sin 'p = E(P) - BP = f(P) , 

can be defined where H is the Hamiltonian, cy is the field intensity, and E and P are . 
the energy and momentum of the electron, all in dimensionless units. 

Figure lb shows the relationship between cp and P through the function f. The 
The minimum value of f(P) shape of the curve depends only on the wave velocity 8. 

a1 lowed by 

f(P) = E(P) - BP 
(la) 

- =  df v - B = O  , 
dP 

where v is the reduced particle velocity, is fl(P1) = 11E1, where El = (1 - B2)-% and 
P1 = BE1 are the.energy and momentum.of a particle moving at the traveling wave veloc- 
ity.. 
. .  

The maximum and minimum values of f(rp), being f2 and f3 respectively, allowed by 

(1b) 
C Y '  f(rp) = H + - sin cp , 2rr 

are f2 = H + (~ /2 r r ,  and f3 = H - cy/2rr, where.H is determined by the initial condition 
through 

* 
1. J.C. Slater, Rev. Mod. Phys. 20, 473 (1948). 

Work supported in part by the U.S. Office of Naval Research, Contract [NONR 225(67)].  

- 79 - 



* 
As used here in ,  cu is  t h e  e f f e c t i v e  f i e l d .  2a is the  maximum f i e l d  on 
standing wave ax is .  
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I f  H is less than i t s  c r i t i c a l  value,  Hc = l / E 1  4- CY/~TT, f 3  < f l y  and the  o r b i t  of 
I f  H > Hc, f 3  > f ly  and the  o r b i t  is the  p a r t i c l e  i s  l i k e  o r b i t  1 of Figs.  l a  and l b .  

l i k e  e i t h e r  o r b i t  2 o r  3 of Fig. l a ,  depending on t h e  i n i t i a l  conditions.  

Figures 2 through 5 show graphs p lo t t ed  by computer. 
closed o r b i t s  of Fig. la.  The l i n e s  labeled 0 - 0, 1 - 1, e t c .  show the  locus i n  
phase space of e l ec t rons  a t  a given d i s t ance  along the  acce lera tor .  The momentum sca le  
w a s  chosen t o  show des i red  f e a t u r e s  bes t ;  a constant times log(1 + 2P/mc) i s  p lo t t ed .  
In  Fig. 2 ,  fourteen e l ec t rons  start out along l i ne  0 - 0 at  80 keV. 
with cp 2 140° were approaching P . =  0,  and i t  w a s  not considered f r u i t f u l  t o  follow them 
fu r the r .  The l i n e  1 - 1 shows where the  remaining t en  e l ec t rons  were a f t e r  passing 
through 1/16 h .  
j ec t ed  between 70° and 110'. 
ex t rac ted  a t  the  end of a wavelength (on l i n e  4 - 4 ) ,  they would span Bo. 
i n t e r e s t i n g  t h a t  the  e l ec t rons  in j ec t ed  between 60' and 90' could be ex t rac ted  i n  a 2' 
bunch at  the end of 1 h .  
more r ap id ly  t r ave l ing  wave, $ = 0.9,  and Fig.  5 f o r  $ = 1.0 (P1 = m ) .  

2. 

They a r e  segments of t he  

The four s t a r t i n g  

Between t h e  t w o  smallest o r b i t s  are contained a l l  t he  e l ec t rons  in-  
I f  ex t rac ted  a t  v = $, they would span 7' i n  phase; i f  

It is a l s o  

Figure 3 is  f o r  ha l f  t he  acce lera t ing  f i e l d ,  Fig. 4 f o r  a 

* 
Standing Wave a t  Low Energy 

A t  low energ ies ,  t he  t r a j e c t o r i e s  i n  P - tp space of particles which are captured 
i n  standing wave l i n a c s  (1) cross  and r ec ross ,  (2) have kinks every h a l f  wavelength, 
(3) decrease i n  momentum a t  f i r s t ,  and (4) s l i p  about t w i c e  a s  much i n  phase as one 
would expect from the  corresponding t r ave l ing  wave case. 

Figure 6 shows the  o r b i t s  i n  P - cp space f o r  p a r t i c l e s  acce lera ted  by a standing 
wave. The graphs do not c l o s e  on themselves; they do cross .  
t i b l e  kink i n  the  curves a t  the  end of 1 h. ("2" on t h e  graph) because it j u s t  happens 
t h a t  v very near ly  equals  B a t  t h i s  point so t h a t  t he  curves are v e r t i c a l .  

There is  hard ly  a percep- 

Figure 7 gives a very  much enlarged view, f o r  2.5 wavelengths of standing wave 
acce le ra to r ,  of a very s m a l l  segment of a locus such as 4 - 4 i n  Fig. 4. The locus i s  
the  ends of o r b i t s  such as those a t  "10" i n  Fig. 6. An input of AT of 20° has been . 

bunched t o  1' ( 1  - cos 0.5' = 0.4 x with an energy spread of 0.064 mc2 (1.5% of 
present energy, but 0.3 X A go i n i t i a l  Atp (69.5' - 78.5') would give 
0.15%.of present energy. The curve f o r  79.9 kV shows t h a t  t he  'po of the  "bunch" is  
f a i r l y  independent of yo ,  but t he  point "B" i s  where "A" would move f o r  79.0 kV and 
ind ica t e s  t h a t  a v a r i a t i o n  of the  80 kV by 1.2% would a f f e c t  the  r e s o l u t i o g  t o  t h e  ex- 
t e n t  t h a t  the phase spread con t r ibu t ion  t o  the  energy spread would be - 10 . 

of 1 GeV) . 

In  order t o  e s t a b l i s h  a t  least the  d i r e c t i o n  of t he  gradient of good energy reso- 
l u t i o n  i n  the  multidimensional space of buncher design (cu, B2, ... l ength) ,  a l a r g e  
number of ca l cu la t ions  were made. Some r e s u l t s  f o r  a ha l f  wavelength of standing wave 
acce le ra to r  are presented i n  Fig.  8 whose s t r a i g h t  l i n e s  at test  t o  the  roughness of 
approximations made i n  cons t ruc t ing  t h e  f igu re .  The trends,  however, are not approxi- 
mate: (1) good bunches are f a i r l y  independent of 6; (2) low f i e l d  s t r eng ths  give b e t t e r  
bunches. (1) s ince  a AE/E of 1 x lom4 i s  the  
goal, a <  2 would unnecessarily s a c r i f i c e  f a s t  acce le ra t ion  where it i s  most des i r ab le  
( t o  arrest t ransverse  ve loc i ty ) ;  and (2), $ 1 eliminates problems t h a t  might a r i s e  

Two quan t i t a t ive  conclusions were drawn: 
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from other  choices. (For instance,  $ = 1 makes the accelerat ing f i e l d  of the funda- 
'mental frequency independent of the dis tance off  axis . )  

The ca l cu la t ions  leading t o  Fig. 9 were made i n  order t o  design a combination 
buncher and i n j e c t o r  sect ion f o r  a superconducting l inac.  Notwithstanding the possible 
advantages of 
from 1.6 t o  2.6 MeV) by going t o  $ = 0.95 was considered worthwhile. 
length was determined by how much was needed t o  become r e l a t i v i s t i c .  

= 1, the real advantage of increasing the k i n e t i c  energy ( fo r  Z = 2.5 A ,  
The approximate 

Figures 10. and 11 indicate  how the bunch is  formed. Continuously injected elec-  
t rons would be represented a t  the moment of i n j ec t ion  (Z  = 0) by the l i n e  with un i t  
slope. 
wavelength when the fundamental r f  e l e c t r i c  f i e l d  changes sign. Electrons with 160' 
< 'po < 180° a re  stopped a t  Z b A/8. Electrons with -Moo < cpo < looo s top before h i 4  
even though they w e r e  i n i t i a l l y  accelerated.  Electrons injected a t  -100' (180' from 
bunch) would be stopped a t  Z M L/4  and cp M 180° and presumably would be r e j ec t ed  with 
80 kV back a t  the gun. With continuous in j ec t ion ,  5% (Acp, = 20') w i l l  come out i n  a 
t i g h t  bunch, 25% w i l l  come out badly spread i n  phase and energy, 35% w i l l  s top before 
h14,  many of which may be "rejected," but the other  35% get beyond AI4 and i t  is most 
l i k e l y  tha t  they w i l l  end up as heat  i n  the cav i ty  w a l l .  
the bunch gaining on the wave between Z = h and 2.5 A. 
$ and length t h a t  t he  bunch ends with cp -+ 0 f o r  maximum energy gain; it is  not necessary 
f o r  good bunching. 

There appears t o  be an understandable c h a r a c t e r i s t i c  of the bunch. 

The dotted l i n e s  on Fig. 10 show where the electrons are i n  the f i r s t  half  

Figure 11 f o r  $ = 0.95 shows 
It i s  by proper choice of a, 

It passes 
where ( A / 4 )  the f i e l d  i s  maximum when (cp = 0) i t  i s  maximum. 

3 .  Standing Wave at  High Energy 

After the energy of an e l ec t ron  i s  a few MeV, the e f f e c t  of 'the backward t r ave l ing  
wave component on the  longitudinal coordinates of an e l ec t ron  is  completely neg l ig ib l e  
i n  a standing wave accelerator .  

11. CASE 11: OFF AXIS 

1. Introduction 

In  a superconducting accelerator  where high energy r e so lu t ion  i s  possible,  the 
r a d i a l  motion is  p a r t i c u l a r l y  important because of i t s  e f f e c t  on monitoring and control-  
l i n g  the energy of the beam. 

Figure 1 2 ' i s  an attempt t o  show the whole problem at  a glance. Radial momentum 
i s  plot ted .against dis tance off axis.  
a r e  injected i n t o  a short  sect ion of accelerator .  The do t s  t r a c e  the path i n  t h i s  
phase space of a p a r t i c l e  s t a r t e d  a t . u n i t  dis tance off ax i s .  
the middle of t he  f i r s t  cav i ty  is represented by the f a t  e l l i p s e ,  but the dots  show t h a t  
large excursions of momentum have occurred. A t  the  end of t he  f i r s t  cav i ty  the set is  
represented by . the  long t h i n  e l l ipse .  
most of the space between the do t s  shown. A t  the end of f i v e  c a v i t i e s ,  the set i s  re- 
presented by the remaining e l l i p s e .  Note tha t  the e l l ipses  represent a set of particles 
at  c e r t a i n  stages of acceleration: the do t s  represent the o r b i t  of one p a r t i c l e .  

The c i r c l e  represents  a set of p a r t i c l e s  a s  they 

The set of p a r t i c l e s  at  

I f  the dots  were continued they would f i l l  i n  

Figure 12 represents  r a d i a l  motion i n  the f i r s t  accelerator  s ec t ion .  It i s  com- 
pl icated and w i l l  be t r ea t ed  l a s t .  

I 
I 

F i r s t ,  t he . case  w i l l  be t r ea t ed  i n  which the p a r t i c l e  has  i t s  energy much g rea t e r  
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than i t s  rest mass and much g r e a t e r  than the energy gained per wavelength. 
r e s t r i c t i o n  on the energy gradient w i l l  be dropped, and l a s t ,  an in jec t ion  sect ion 
w i l l  be' considered. 

Next the 

Definit ions of symbols a re  given i n  the Appendix. 

2 .  Very High Energy, R e l a t i v i s t i c  Particles 

The equation of r a d i a l  motion i s  

d - ( y 2 ) = - 2rr ar s i n  4nz , dz 

which i s  l inear  i n  r,  r', and r" so t h a t  a l l  solut ions may be scaled. 
a x i a l  motion in tegra tes  t o  

The equation of 

(3) 

where a small l i b e r t y  has been taken with the.constants  of in tegra t ion  by requiring 
tha t  zo = y o l a  and zo is  integer  o r  half  integer .  

I 

The s ine  i n  each of Eqs .  (2)  and (3) is the r e s u l t  of the backward t ravel ing com- 
ponent of the standing wave. The contribution t o  the r a d i a l  force from E and v X B 
ident ica l ly  cancel i n  the forward ' t ravel ing component. 

Combining E q s .  (2)  and (3)  and the' d e f i n i t i o n  of r a d i a l  momentum, and l e t t i n g  
x = 4rrz 

(4a) 

(4b) 
d r  P 
dx x - s i n  x 
- =  

Equating both the s ines  i n  Eq.  (4) t o  zero, the  t ravel ing wave solut ion i s  found 
t o  be 

P = P .  

r = P  l n - + r O  . 
0 Y 

X 

o x  
0 

Using t h i s  r a s  a f i r s t  t r i a l  solut ion,  and in tegra t ing  by p a r t s  t o  increase the 
power of x - x o l x ,  a so lu t ion  correct  t o  the f i r s t  order i n  (x - xo)/x was found: 

cos x x l n - - -  sin x ]'+ ro L r- 2 cos + 1 - X 
X 

0 
8 P =  Po [ l + F  X 0 2x 

cos x - s i n  x cos x 
* +  2 4x 

I .  r = Po [In :I+ ro [l - 7 1 In  - +  x - s i n  x 
X 2x 

0 0 

None of the terms i n  Eq.  (6) is  a r e s u l t  of the s ine  i n  Eq. (4b) ; t h a t  is, the i n t r a -  
cavi ty  change i n  mass is  not a f i r s t  order e f f e c t .  
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As indicated i n  Fig. 12, the gyrations within a cavi ty  may be l e g e  compared with 
the net change across a cavi ty  which is of chief importance. Let t ing x - xo = 2rr, and 
xo = Prrn, the e f f e c t  of the (n + l ) t h  cavity is  given by the difference equations: 

r (n)  
1 P(n + 1) - p(n) = - p(n) - - 2n 8n 

Y (7b) 
-1 1 

-1 

r ( n  + 1) - r(n) = - n P(n) - - zn r (n)  

which again a re  good t o  f i r s t  order i n  n . 
A solution which s a t i s f i e s  Eq. (7) t o  f i r s t  order i n  n-l  is  

P(n) = J3 Po s i n  (L + e )  - 3(8)-% ro s i n  L ', (8a) 

(8b) r (n)  = 2 J2 p0 s i n  L + EI ro s i n  ( 0  - L) Y 

where L = (8)-% I n  n/no and s i n . 9  = (3)-'. 

Equation (8) is  plotted i n  Figs. 13 and 14. The sol id  t r iangles  on each curve 
i n d i c a t e , t h e  points  up t o  which the curves were checked against  a very accurate computer 
calculat ion tha t  s ta r ted  with 2, = 100 A .  
ergy. The p a r t i c l e  w i l l  cross the axis  a f t e r  i t  has increased i t s  energy t o  5.7 t i m e s  
i t s  i n i t i a l  energy i f  i ts  i n i t i a l  r a d i a l  momentum i s  zero. From the  t i m e  the p a r t i c l e  
crosses the ax is ,  i t s  rad ia l  momentum w i l l  continue t o  increase u n t i l  i t s  energy i s  in-  
creased by a f a c t o r  of 15 and i ts  r a d i a l  displacement w i l l  increase u n t i l  i t s  energy 
is  increased by a fac tor  of 85; i t  w i l l  recross  the ax is  again a t  energy fac tor  (85) . 

From the equations, it appears tha t  the maximum r a d i a l  excursion w i l l  be minimized 

The n ' s  of Eq. (8) can be interpreted as  en- 

2 

i f  Po = B ro, and fur ther  tha t  a complete cycle of r a d i a l  motion w i l l  be made every 
t i m e  the energy is  increased by a fac tor  of 5 x 10 . 7 

Comparing the standing and t ravel ing wave rad.ial motion over an energy increase 
of a fac tor  of e ,  

Standing Wave 

3 p = - p  - -  
2 0 h o  

1 
0 2 0  r = P  + - r  

Traveling Wave 

P = Po 

r = P  + r o  
0 

it appears tha t  there  i s  a s ign i f icant  difference from the Lorentz contracted d r i f t  
tube analogous t o  the  t ravel ing wave accelerator .  

As suggested by the eigenvector found during the solut ion of Eq.  (7) ,  l e t  
Q = 2 m P ,  . .  

Q = Q, cos L + (J2 Q, - 0 r )  sin.^ 

r = (J3 Q, - J2 ro> s i n  L + ro cos L 

, (9a) 

. (9b) 

0 

. 
The maximum values of Q and r a r e  each equal t o  K which is  a constant of the motion 
and K2 = 3Q2 - 2 J6 Qr + 3r2. I f  the axes a r e  rotated 4 5 O  and K i s  magnified t o  uni ty ,  
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x x 0 COS L + (J3 + J2) yo s i n  L ., 
* .  

y = - (J3 - J 2 )  x s i n  L + y cos L . 
0 0 

From t h i s ,  the constant of the motion i s  found t o  be 

2 The e l l i p s e  found i n  Eq. ( 1 1 ) . i s  shown i n  O r  space i n  Fig. 15; i t s  area is nK //3. 
This e l l ipse  i s  a t r a j e c t o r y  a s  contrasted with the e l l ipses  of Fig. 12 which represent- 
ed sets of p a r t i c l e s .  

3 .  R e l a t i v i s t i c  P a r t i c l e s  

I f  yo i s  not much g rea t e r  than a, the analysis  of the previous sec t ion  does not 
apply, but t h i s  can only be the case over only a few wavelengths because y = az f o r  
r e l a t i v i s t i c  particles.  

To invest igate  t h i s ,  computer ca l cu la t ions  were made over one-half wavelength and 
the r e s u l t s  plot ted in Fig.  16. I n  a d r i f t  tube, the p a r t i c l e  represented by the dot 
on the c i r c l e  would have moved d i r e c t l y  t o  the dot a t  i ts  r i g h t .  
ference is  s l i g h t .  

I f  zo = 10 A ,  t h e . d i f -  
If zo = A ,  the  difference i s  s ign i f i can t .  

The s imple conclusion is t h a t  f a r  z > LO t h e  analysis  of t he  previous sec t ion  is 
adequate, f o r  z > 100 i t  is  as good as  the computer, and f o r  z < 10 the computer should 
be used. 

4. The Iniector  Section 

Consideration of t he  i n j e c t o r  s ec t ion  is  not complete, but some ca l cu la t ions  have 
been made. The t e n t a t i v e  conclusion i s  t h a t ,  i n  f i r s t  order,  even t h i s  sect ion a c t s  
l i k e  a d r i f t  tube i f  the gyrat ions within a cav i ty  are not considered. Figure 1 7  shows 
the e f f e c t  of acceler'ation from 80 keV t o  100 MeV. I n  the i n j e c t o r  sect ion,  i .e.  during 
the f i r s t  2X, besides the  d r i f t  tube e f f e c t  of t i l t i n g  the e l l i p s e  forward the re  is  a 
s l i g h t  defocusing i n  t h a t  the absolute values of a l l  momenta are increased by about 
30%. In  the next 10 A ,  a f t e r  the axial  phase is  set t o  zero, the par t ic les  (two 0.f 
which are represented by do t s  on the curve) move much as  would be expected from the an- 
a l y s i s  of the high energy.sect ion.  The next two sect ions of 20 A each continue t o  ac- 
c e l e r a t e  as  expected. I f  a 20' a x i a l  phase bunch had been injected,  the set ( i n  r a d i a l  
phase space) t ha t  w a s  f i r s t  t o  be injected ( loo ea r ly )  and the set last t o  be injected 
a r e  shown separately a t  52 A .  
wave in j ec to r  i s  soluble.  

Clear ly ,  the r a d i a l  phase space problem i n  a standing 

Figure 18 shows t h e ' r e s u l t s  of some ca l cu la t ions  on another i n j e c t o r  sect ion.  To 
get a f ee l ing  f o r  t he  problem the  question w a s  asked, "What i s  necessary t o  get  a paral- 
lel  beam out of the in j ec to r?"  Electrons were put i n  A I 6 0  off a x i s  and the answer de- 
pends strongly on a x i a l  phase. For an e l ec t ron  i n  the middle of t he  a x i a l  bunch, the 
answer is tha t  i t  should be aimed a t  a point on the ax i s  f = 1.8 X i n t o  the accelerator .  
For those with d i f f e r e n t  a x i a l  phase, the answer i s  d i f f e r e n t ,  as shown i n  the table:  
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cp - ‘Po f/h 

5O 1.0 

loo  0.75 

* .  0 1 .8  

- 5O 2 . 7  
-loo m 

For a given ro i n  the  high energy sec t ion ,  t he  r a d i a l  phase space enclosed i n  an 
o r b i t  i s  minimum i f  Po = 
angle  of 0 = ro/2zo. 
q u i r e  e f . =  3 mrad r a t h e r  than ef = 0 which w a s  used a s  a b a s i s  f o r  t he  above t a b l e .  

ro, which i s  t o  say  that it should be  d iverg ing  wi th  an 
I n  the  case of t h e  i n j e c t o r  s e c t i o n  of F ig .  18, t h i s  would re- 

This  does not  conclude the  work on the  i n j e c t o r ,  but  i t  does show a way t o  the  
s o l u t i o n  of r a d i a l  phase space problems. 

APPENDIX 

I. ONE DIMENSION TRAVELING WAVE 

Defining Bc, 1, and F t o  be the  wave v e l o c i t y ,  wavelength, and maximum electric 
f i e l d  i n t e n s i t y  i n  t h e  acce le ra to r ,  r e s p e c t i v e l y ,  and g iv ing  o t h e r  symbols t h e i r  
usua l  meaning, 

dP - d t  = qF cos  (po + 217 

dz - = v  , d t  

(A-1) 

which can be put i n t o  the. form 

I 

This  immediately suggests  s impl i fy ing  t o  dimensionless  v a r i a b l e s .  
primed : 

Old symbols are 

- p J  = p 
nc 

- =  E ‘  E 2 
m c  

= v  - V I .  
C 

q F h -  
2 * mc 

(A-2) 

The acce le ra t ing  f i e l d  parameter, cy, is t h e  electric f i e l d  i n t e n s i t y  i n  u n i t s  of 
p a r t i c l e  rest masses/q (0.511 MV f o r  e l ec t rons )  p e r  wavelength. 
can be w r i t t e n  more simply: 

Now the  equat ions 

dP dz - v 
d t  B d t  B ’ 
- = cos  [q0 + 2T(2 - t ) ]  ; - - - 
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Defining the phase 

cp = cp, + 2n(z - t )  y (A-4) 

which is  the  amount by which the  p a r t i c l e  is ahead of the c r e s t  of t h e  wave, then 

9 = 2 = ( 1 - 9  dz , 

Now Eqs. (A-3) (A-4) , and (A-5) can be combined: 

- = -  dP cy cos qY dz v 

CY cos cp - =  dP 
dcp ZT(V - 8) 

The equations required from spec ia l  r e l a t i v i t y  now have p a r t i c u l a r l y  simple forms: 

E 2 = P  2 + 1  

P dE v = - = -  
E dP ' 

(A-5) 

(A-6)  

(A-7) 

Equation (A-6)  is e a s i l y  in t eg ra t ed  t o  give 

CY 
E - B P = - s s i n ~ p + H  2TT , (A-8)  

where H is  the constant i f  i n t e g r a t i o n  and can be shown t o  be t h e  Hamiltonian. 1 

' The complete so lu t ion  needs another equation t o  show the  r e l a t i o n s h i p  between 
Such an equation i s  (A-5), but i t  has not been in tegra ted  i n  z o r  t ,  and P, E, o r  cp. 

closed form. 

11. ONE DIMENSION STANDING WAVE 

Going back t o  Eq. (A-3), w e  can see t h a t  t he  addi t ion  of a wave t r ave l ing  i n  the  
opposite d i r e c t i o n  w i l l  give a standing wave 

dP CY 
d t  B - = r cos  [q0 + 2n(z - t ) ]  - cos  [yo + 2n(- 2 -  t ) ]  

- _ -  2cY s i n  (2nz) s i n  (2nt - cp0) - 8  

dz v 
d t  B 
- = -  

(A-9) 

Because of the  need to  i n t e g r a t e  the  equations over exac t ly . the  s a m e  length of 
acce le ra to r ,  so t h a t  t he  e x i t  phases be comparable, t h e  equations used were changed 
t o  have z as the  independent va r i ab le  
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These are the 

- dP = 2 sin (2nz) sin (2nt - 'po) 
dz v 

(A-10) 
&=I . 
dz v 

quations for a rr-mode standing wave accelerator on the axis of its 
cylindrical symmetry. 
Eq. (A-4). 

Phase is defined the same as in the traveling wave case, 

111. CYLINDRICALLY SYMMETRIC STANDING WAVE 

Returning to the conventional meaning of symbols for a moment, 

EZ = FAZ 

A ~ - ~  -' w n sin (kz) Jo(yr) sin (wt - "p) 

Er = FAr 

k 
r n-Y 

A = - 1 w . - cos (kz) Jl(yr) sin (cut - 'p,) (A-11) 

Be = (F/c) Ae 

= 7 w Ae n yc sin (kz) Jl(yr) cos (wt - rgo) 

2 2  y2 -I- k2 = u) / c  

k = 2n(2n - 1)/A , n = 1, 2, 3, .... 
Equations (A-11) describe the field at a particle in a cylindrically symmetric 

accelerator which has planes of symmetry at the center of each wavelength and anti- 
symmetry at the ends of each wavelength. 

Neglecting the effect of the transverse velocity on the relativistic mass of the 
. particle, the equation 

can be reduced to one in the z direction, 

and one in the transverse plane, 

d?T 
- = (qEr - qvBe)s dt 

(A-12) 

(A-13) 

(A-14) 

- 8 7 ' -  



where Ti is the radial unit vector and v is the velocity in the z direction, as before. 
2 Still using conventional notation, E/c is the relativistic particle mass, and 

-b * 2  P = ;E/c T 

d?T c2 .. 
dt = ;E + ;i . - 

Invoking some fundamental mechanics where R and 8 are unit vectors, 

+ 
r = ;ii + r63 

r = (Y - ri2> ii + (226 + rii) z .. -+ . 
Combining (A-14) , (A-15), and (A-16), 

.. 
( F  - &2) E + 2 - i = - qvBQ ; (226 + r8)E + r8E = 0 2 qEr 

C 
. 2  

C 

( A - 1 5 )  

(A-16) 

(A-17) 

In addition to the simplifying definitions (A-2), add 

r' - = r  . (A-18) A 

To eliminate the second order derivatives, define 

(A-19) 

Equations (A-7), (A-13), (A-17), and (A-19) reduce, with the definitions in (A-2), 
(A-11) , and (A-18), to: 

- =  dt I! 
dz v 

2 ds ru s dE + 2 
(Ar - vAe) dz v E dz vE 

- = - - - -  

dr s 
dz v 

du 2su u dE 
dz vr E dz 
de u 
dz. v 

- = -  

- = e - - - -  

- = -  

J7-x 
E v =  
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In accordance with definitions, the arguments of the auxiliary functions in (A-11) 
can be somewhat simplified: 

N 
A =I wn sin (z) JO(R> sin (T - 'pol Z 

1 

(A-21) 

where 

T = 2rrt . 
By computer, the evaluation of the functions (A-21) and the integration of Eqs. (A-20) 
are. straightforward . 

The coefficients wn can be obtained in theory from the Fourier analysis.of a known 
The coefficients actually in use are obtained from T.I. Smith' who estimated field. 

them by numerically solving Maxwell's equations for the accelerator cavity. 
few coefficients are shown in the table: 

The first 

n - W n 

1 
2 
3 

4 .  
5 

1.0000 
-0.0137 
-0.0106 
-0.0014 
+o .0002 

2 .  T.I. Smith, private communication. 
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Fig. 1. Orbits in phase space, traveling wave accelerator. 
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Fig. 2. Computed orbits in phase space, traveling wave accelerator. 
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Fig. 3. Computed orbits in phase space, traveling wave accelerator. 
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Fig. 4 .  Computed orbits in phase space, traveling wave accelerator. 
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Fig. 5. Computed orbits in phase space, traveling wave accelerator. 
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Fig. 6 ;  Computed orbits Fn P - CJ space, standhg wave accelerator. ' 
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Fig. 7. The bunch of electrons at exit of 2.5 A standing wave accelerator section. 

EFFECT OF FIELD STRENGTH ON BUNCHING IN ONE' CAVITY 1 PARAMETER is AE/E x 104 
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Fig. 8. Effect of cy and B on bunching. 
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Fig. 10. Bunch forming in standing wave accelerator. 
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Fig. 11. Bunch forming in standing wave accelerator. 
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F i g .  1 2 * :  Orbits  and sets i n  r a d i a l  phase space .  
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Fig. 15. Radial phase space trajectory in standing wave linac. 

2 Fig. 16. Sets of relativistic particles in radial phase space, E - M,C 
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Fig .  17. S e t  of particles in  radial phase space. 
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F i g .  18. Lens property of injector section. 
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